Exploring Data Frames
Last updated on 2024-11-19 | Edit this page
Overview
Questions
- How can I manipulate a data frame?
Objectives
- Display basic properties of data frames including size and class of the columns, names, and first few rows.
- Subset data frames by index and name.
Working with data
Let’s work with a realistic dataset in data frame. First, we need to set up our environment:
R
dir.create("~/R_tutorial/data", recursive = TRUE)
setwd("~/R_tutorial")
This makes sure that everything we do from now on happens relative to
the ~/R_tutorial
directory. In practice, for better
reproducibility, you’ll want to set up an R project.
Now let’s download the data:
R
download.file("https://swcarpentry.github.io/r-novice-gapminder/data/gapminder_data.csv",
destfile = "data/gapminder_data.csv")
And finally, we can read it into a variable
R
gapminder <- read.csv("data/gapminder_data.csv")
Miscellaneous Tips
Another type of file you might encounter are tab-separated value files (.tsv). To specify a tab as a separator, use
"\\t"
orread.delim()
.You can also read in files directly into R from the Internet by replacing the file paths with a web address in
read.csv
. One should note that in doing this no local copy of the csv file is first saved onto your computer. For example,
R
gapminder <- read.csv("https://raw.githubusercontent.com/swcarpentry/r-novice-gapminder/gh-pages/_episodes_rmd/data/gapminder_data.csv")
- You can read directly from excel spreadsheets without converting them to plain text first by using the readxl package.
Let’s investigate gapminder a bit; the first thing we should always
do is check out what the data looks like with str
:
R
str(gapminder)
OUTPUT
'data.frame': 1704 obs. of 6 variables:
$ country : chr "Afghanistan" "Afghanistan" "Afghanistan" "Afghanistan" ...
$ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
$ pop : num 8425333 9240934 10267083 11537966 13079460 ...
$ continent: chr "Asia" "Asia" "Asia" "Asia" ...
$ lifeExp : num 28.8 30.3 32 34 36.1 ...
$ gdpPercap: num 779 821 853 836 740 ...
An additional method for examining the structure of gapminder is to
use the summary
function. This function can be used on
various objects in R. For data frames, summary
yields a
numeric, tabular, or descriptive summary of each column. Numeric or
integer columns are described by the descriptive statistics (quartiles
and mean), and character columns by its length, class, and mode.
R
summary(gapminder)
OUTPUT
country year pop continent
Length:1704 Min. :1952 Min. :6.001e+04 Length:1704
Class :character 1st Qu.:1966 1st Qu.:2.794e+06 Class :character
Mode :character Median :1980 Median :7.024e+06 Mode :character
Mean :1980 Mean :2.960e+07
3rd Qu.:1993 3rd Qu.:1.959e+07
Max. :2007 Max. :1.319e+09
lifeExp gdpPercap
Min. :23.60 Min. : 241.2
1st Qu.:48.20 1st Qu.: 1202.1
Median :60.71 Median : 3531.8
Mean :59.47 Mean : 7215.3
3rd Qu.:70.85 3rd Qu.: 9325.5
Max. :82.60 Max. :113523.1
To extract a column, we can use the $
operator. We use
head
to just see the first few entries:
R
head(gapminder$lifeExp)
OUTPUT
[1] 28.801 30.332 31.997 34.020 36.088 38.438
We can examine the types of individual columns of the data frame with
the typeof
function:
R
typeof(gapminder$year)
OUTPUT
[1] "integer"
R
typeof(gapminder$country)
OUTPUT
[1] "character"
R
str(gapminder$country)
OUTPUT
chr [1:1704] "Afghanistan" "Afghanistan" "Afghanistan" "Afghanistan" ...
No matter how complicated data gets, in R, it is always one of 5 main
types: double
, integer
, complex
,
logical
, and character
.
We can also interrogate the data frame for information about its
dimensions; remembering that str(gapminder)
said there were
1704 observations of 6 variables in gapminder, what do you think the
following will produce, and why?
R
length(gapminder)
OUTPUT
[1] 6
A fair guess would have been to say that the length of a data frame would be the number of rows it has (1704), but this is not the case. Data frames are stored as lists of vectors, so the length is the number of separate columns of data.
Lists vs vectors
What’s the difference between a list and a vector in R? A vector is a collection of objects of the same type:
R
chr_vec <- c('a', 'b', 'c')
int_vec <- c(1, 2, 3)
A list on the other hand can contain multiple types:
R
ex_list <- list(1, "a", TRUE, 1+4i)
A data frame is nothing more than a fancy list!
R
typeof(gapminder)
OUTPUT
[1] "list"
When length
gave us 6, it’s because gapminder is built
out of a list of 6 columns. To get the number of rows and columns in our
dataset, try:
R
nrow(gapminder)
OUTPUT
[1] 1704
R
ncol(gapminder)
OUTPUT
[1] 6
Or, both at once:
R
dim(gapminder)
OUTPUT
[1] 1704 6
We’ll also likely want to know what the titles of all the columns are, so we can ask for them later:
R
colnames(gapminder)
OUTPUT
[1] "country" "year" "pop" "continent" "lifeExp" "gdpPercap"
At this stage, it’s important to ask ourselves if the structure R is reporting matches our intuition or expectations; do the basic data types reported for each column make sense? If not, we need to sort any problems out now before they turn into bad surprises down the road, using what we’ve learned about how R interprets data, and the importance of strict consistency in how we record our data.
Once we’re happy that the data types and structures seem reasonable, it’s time to start digging into our data proper. Check out the first few lines:
R
head(gapminder)
OUTPUT
country year pop continent lifeExp gdpPercap
1 Afghanistan 1952 8425333 Asia 28.801 779.4453
2 Afghanistan 1957 9240934 Asia 30.332 820.8530
3 Afghanistan 1962 10267083 Asia 31.997 853.1007
4 Afghanistan 1967 11537966 Asia 34.020 836.1971
5 Afghanistan 1972 13079460 Asia 36.088 739.9811
6 Afghanistan 1977 14880372 Asia 38.438 786.1134
Challenge 1
It’s good practice to also check the last few lines of your data and some in the middle. How would you do this?
Hint: You can get help on a command by typing ?
before the command name in the console, e.g., ?head
.
Searching for lines specifically in the middle isn’t too hard, but we could ask for a few lines at random. If you have time after finishing the other challenges, think of a way to code this.
Hint: You can search for commands by typing ??
before a search term, e.g., ??random
.
To check the last few lines it’s relatively simple as R already has a function for this:
R
tail(gapminder)
tail(gapminder, n = 15)
What about a few arbitrary rows just in case something is odd in the middle?
Tip: There are several ways to achieve this.
The solution here presents one form of using nested functions, i.e. a function passed as an argument to another function. This might sound like a new concept, but you are already using it! Remember my_dataframe[rows, cols] will print to screen your data frame with the number of rows and columns you asked for (although you might have asked for a range or named columns for example). How would you get the last row if you don’t know how many rows your data frame has? R has a function for this. What about getting a (pseudorandom) sample? R also has a function for this.
R
gapminder[sample(nrow(gapminder), 5), ]
To make sure our analysis is reproducible, we should put the code into a script file so we can come back to it later.
Challenge 2
Make a scripts/
directory inside your working directory.
Go to File -> New File -> R Script, and write an R script to load
in the gapminder dataset. Save the script in your scripts/
directory.
Run the script using the source
function, using the file
path as its argument (or by pressing the “source” button in
RStudio).
The source
function can be used to use a script within a
script. Assume you would like to load the same type of file over and
over again and therefore you need to specify the arguments to fit the
needs of your file. Instead of writing the necessary argument again and
again you could just write it once and save it as a script. Then, you
can use source("Your_Script_containing_the_load_function")
in a new script to use the function of that script without writing
everything again. Check out ?source
to find out more.
R
download.file("https://raw.githubusercontent.com/swcarpentry/r-novice-gapminder/gh-pages/_episodes_rmd/data/gapminder_data.csv", destfile = "data/gapminder_data.csv")
gapminder <- read.csv(file = "data/gapminder_data.csv")
To run the script and load the data into the gapminder
variable:
R
source(file = "scripts/load-gapminder.R")
Challenge 3
Read the output of str(gapminder)
again; this time, use
what you’ve learned about lists and vectors, as well as the output of
functions like colnames
and dim
to explain
what everything that str
prints out for gapminder means. If
there are any parts you can’t interpret, discuss with your
neighbors!
The object gapminder
is a data frame with columns
-
country
andcontinent
are character strings. -
year
is an integer vector. -
pop
,lifeExp
, andgdpPercap
are numeric vectors.
Subsetting data frames
Generally, use the []
operator to subset data. Starting
with a small vector, we can get the first entry.
R
x <- c("a", "b", "c")
x[1]
OUTPUT
[1] "a"
Vector numbering in R starts at 1
In many programming languages (C and Python, for example), the first element of a vector has an index of 0. In R, the first element is 1.
Since a data frame is just a list of its columns, using
[
to index will work the same way as a list. It turns out
that the resulting object will also be a data frame:
R
head(gapminder[3])
OUTPUT
pop
1 8425333
2 9240934
3 10267083
4 11537966
5 13079460
6 14880372
On the other hand, [[
will extract a single
column as a vector:
R
head(gapminder[["lifeExp"]])
OUTPUT
[1] 28.801 30.332 31.997 34.020 36.088 38.438
And as we’ve seen, $
provides a convenient shorthand to
extract columns by name:
R
head(gapminder$year)
OUTPUT
[1] 1952 1957 1962 1967 1972 1977
With two arguments, [
can index rows and columns:
R
gapminder[1:3,]
OUTPUT
country year pop continent lifeExp gdpPercap
1 Afghanistan 1952 8425333 Asia 28.801 779.4453
2 Afghanistan 1957 9240934 Asia 30.332 820.8530
3 Afghanistan 1962 10267083 Asia 31.997 853.1007
If we subset a single row, the result will be a data frame (because the elements are mixed types):
R
gapminder[3,]
OUTPUT
country year pop continent lifeExp gdpPercap
3 Afghanistan 1962 10267083 Asia 31.997 853.1007
But for a single column the result will be a vector (this can be
changed with the third argument, drop = FALSE
).
Challenge 4
Fix each of the following common data frame subsetting errors:
- Extract observations collected for the year 1957
- Extract all columns except 1 through to 4
R
gapminder[,-1:4]
- Extract the rows where the life expectancy is longer the 80 years
R
gapminder[gapminder$lifeExp > 80]
- Extract the first row, and the fourth and fifth columns
(
continent
andlifeExp
).
R
gapminder[1, 4, 5]
- Advanced: extract rows that contain information for the years 2002 and 2007
R
gapminder[gapminder$year == 2002 | 2007,]
Fix each of the following common data frame subsetting errors:
- Extract observations collected for the year 1957
R
# gapminder[gapminder$year = 1957,]
gapminder[gapminder$year == 1957,]
- Extract all columns except 1 through to 4
R
# gapminder[,-1:4]
gapminder[,-c(1:4)]
- Extract the rows where the life expectancy is longer than 80 years
R
# gapminder[gapminder$lifeExp > 80]
gapminder[gapminder$lifeExp > 80,]
- Extract the first row, and the fourth and fifth columns
(
continent
andlifeExp
).
R
# gapminder[1, 4, 5]
gapminder[1, c(4, 5)]
- Advanced: extract rows that contain information for the years 2002 and 2007
R
# gapminder[gapminder$year == 2002 | 2007,]
gapminder[gapminder$year == 2002 | gapminder$year == 2007,]
gapminder[gapminder$year %in% c(2002, 2007),]
Challenge 5
Why does
gapminder[1:20]
return an error? How does it differ fromgapminder[1:20, ]
?Create a new
data.frame
calledgapminder_small
that only contains rows 1 through 9 and 19 through 23. You can do this in one or two steps.
gapminder
is a data.frame so needs to be subsetted on two dimensions.gapminder[1:20, ]
subsets the data to give the first 20 rows and all columns.
R
gapminder_small <- gapminder[c(1:9, 19:23),]
Key Points
- Use
str()
,summary()
,nrow()
,ncol()
,dim()
,colnames()
,rownames()
,head()
, andtypeof()
to understand the structure of a data frame. - Read in a csv file using
read.csv()
. - Understand what
length()
of a data frame represents. - Indexing in R starts at 1, not 0.
- Access individual values by location using
[]
.